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The first synthesis of single enantiomers of ketomycolic acids
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Abstract—We report the synthesis of single enantiomers of two protected ketomycolic acids, one containing a cis-cyclopropane the
other an a-methyl-trans-cyclopropane, and of related hydroxy-mycolic acids.
� 2007 Elsevier Ltd. All rights reserved.
Mycolic acids, for example 1–5 (Scheme 1), are major
constituents of the cell envelope of Mycobacterium
tuberculosis and other mycobacteria, some of which
are pathogenic to animals and humans.1–4 Their pres-
ence is thought to be linked to the characteristic resis-
tance of these organisms to most current antibiotics
and other chemotherapeutic agents.5

The two stereocentres in the a and b-positions relative to
the carboxylic group have both been found to be in the
R-configuration for all the mycolic acids examined, irre-
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spective of the other functional groups.6–10 The presence
of the hydroxyl group and the relative configuration
between it and the alkyl chain has been demonstrated
to be capable of altering the film molecular packing.11,12

Moreover, the absolute configuration of these two chiral
centres is necessary for efficient recognition by T cells
and the generation of an immune response by the host
organism against pathogenic mycobacteria;13 the same
is also true for the antitumour properties of mycolic acid
derivatives.14 The balance of a-mycolic acids 1 and 3,
methoxy- 2 and 4 and ketomycolic acids such as 5 is
5
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characteristic of specific bacteria;4,5 in each case, each
type of mycolic acid is present as a mixture of homo-
logues. In the case of M. tuberculosis, the exact role of
each type in the pathogenesis of disease remains to be
confirmed, but the oxygenated mycolic acids have a par-
ticular influence on macrophage growth; strains lacking
ketomycolates have a reduced ability to grow within
THP-1 cells.15,16 Moreover, the absence of keto and
methoxymycolates leads to attenuation of M. tuberculo-
sis in mice; the vaccine strain Mycobacterium bovis
BCG-Pasteur lacks methoxy-mycolates.17 It was shown
recently that cyclopropane stereochemistry plays a key
role in pathogenesis and immuno-modulatory function;
thus a mutant strain lacking the ability to produce trans-
cyclopropanes enhances the induced macrophage
inflammatory response.18 The stereochemistry was
shown to affect host innate immune responses both
positively and negatively. We have recently reported
the synthesis of an a-mycolate of type 1,19 and of meth-
oxymycolates of type 2 with either absolute stereoche-
mistry at the cis-cyclopropane or a-methyl-b-methoxy
fragment.20 We have also reported the synthesis of
meromycolate fragments containing the a-methyl-
trans-cyclopropane unit, again in a variety of stereo-
chemistries, and provided evidence that the relative
stereochemistry of methyl and cyclopropane is as
shown in 6, and that, at least in the case of wax esters
derived by enzymatic Baeyer–Villiger reaction of keto-
mycolates, the absolute stereochemistry of this sub-unit
is also as shown in 6.21 There is evidence that in some
cases the methoxy and methyl groups of mycolic acids
2 and 4 are S,S and that the a-methyl ketone of keto-
mycolates is S, though it is not clear whether the stereo-
chemistry is important for biological effect.7,22b We
now report a synthesis of ketomycolates containing both
a-methyl-trans- and cis-cyclopropane fragments, 6 and
7, that can be adjusted to produce a variety of absolute
stereochemistries and chain lengths (Scheme 2). The
method in each case involves linking three separate
intermediates containing each set of chiral centres. The
a-methylketone is introduced through either 823 (or its
enantiomer),20 and the R,R-hydroxy acid through a
sulfone 11.24 The a-methyl-trans-cyclopropane is
introduced as sulfone 9 or one of its diastereomers,
and the cis-cyclopropane as 23 or its enantiomer.20,21
(iii)
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Scheme 3. Reagents and conditions (i) (a), LiN(SiMe3)2, THF (80%); (b), 2,4,
LiAlH4, THF (97%); (b), PCC, CH2Cl2 (98%); (c), LiN(SiMe3)2, (11), THF
(91%); (e), HFÆpyridine, pyridine, THF (92%); (iii) PCC, CH2Cl2 (100%).
Thus, a protected analogue 13 of a single enantiomer of
trans-ketomycolic acid 6 was prepared by coupling alde-
hyde 8, with sulfone 9 and base in a modified Kocienski–
Julia reaction, followed by saturation of the E/Z-mix-
ture of alkenes produced with di-imide to give ester 10
(Scheme 3). Conversion of this into an aldehyde, a sec-
ond Kocienski–Julia reaction using 11, saturation and
then deprotection of the silyl ether gave compound 12,
½a�21

D +10.0 (c 0.83, CHCl3).25 This represents the first
synthetic hydroxymycolic acid, although the R-hydr-
oxy-R-methyl stereochemistry is probably the reverse
of that in nature. Although hydroxymycolic acids are
not widely reported, they are thought to be on the bio-
synthetic pathway to methoxymycolic acids,16,22a and
have been detected in M. tuberculosis, Mycobacterium
smegmatis and M. bovis BCG Pasteur and Glaxo.22b

The specific rotation of 12 is more positive than natural
hydroxymycolic acid mixtures from M. bovis BCG
or M. smegmatis; this may be explained based on the
approximate additivity of molecular rotations, the
S,S–CH(CH3)–CHOH– fragment being reported to
contribute �43 to MR.22b Finally, alcohol 12 was oxi-
dized to the protected acid 13, ½a�20

D +3.13 (c 0.96,
CHCl3);26 this value was considerably less positive than
that reported for the natural ketomycolates of M. bovis
BCG,22b again supporting the fact that the a-methyl
ketone is S- in the natural sample.27

The 1H NMR of 13 was identical to the major compo-
nent of a mixture of natural ketomycolic acid methyl
esters isolated from MTB,28 after acetylation of the
alcohol (the minor component was mainly cis-cyclopro-
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pane-containing ketomycolic acids); there was also a
complete correspondence between the 13C NMR peaks
seen for 13 and those for the major isomer in the natural
sample; in particular the cyclopropane CH2-carbon
appeared at d 10.49 for both. Moreover, the MALDI-
MS29 was identical to the major component of the nat-
ural sample. To establish that the oxidation of alcohol
12 to ketone 13 had not induced epimerization adjacent
to the ketone, a Baeyer–Villiger oxidation of model
ketone 14 was carried out (Scheme 4).

Hydrolysis of ester 15 gave alcohol R-16, ½a�23
D �3.8

(c 0.47, CHCl3), the specific rotation of which was in
agreement with that reported and (after re-esterification)
ester 17 of a synthetic mero-wax dicarboxylic acid.30

This established both that no epimerization had
occurred in the oxidation to produce the ketone and
that, at least in this model, the supposed enzymatic
Baeyer–Villiger oxidation could be reproduced chemi-
cally and occurred with the retention of stereochemistry
at the migrating centre. Assuming that the enzymatic
oxidation of natural ketomycolic acid also occurs with
retention of stereochemistry, the latter can also be
assigned as S at the a-methyl ketone, as the alcohol
produced is S-16 [a]D +3.5 or S-2-octadecanol [a]D
+5.7.30 The synthesis of the S-isomer of ketomycolic
acid, using the above method and the known enantio-
mer of 11, is underway.

A second model was used to establish the relative stereo-
chemistries of the methyl and methoxy groups in
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Scheme 5. Reagents and conditions (i) NaBH4, THF (92%); (ii) NaH, CH3I
methoxymycolates. Thus oxidation of alcohol 1831 led
to ketone 19; reduction of this with sodium borohydride
led to an inseparable mixture of alcohols 18 and 20,
which could be distinguished by the positions of the
hydrogens adjacent to the alcohol at d 3.50 and 3.43
and the attached carbon at d 76.1 or 75.2, respectively.32

The mixture was methylated to give 21 and 22. NMR
analysis of the mixture showed that the two isomers
gave distinct patterns for the methoxy group at d 3.36
and 3.35 and for the b-methyl-group at 0.85 and 0.87.
Pairs of signals for the two isomers were also seen in
the 13C NMR at d 85.5/85.4 and 57.7/57.3. That for
21 was identical to the pattern for a natural methoxy-
mycolic acid (Scheme 5).

In the same way, cis-cyclopropane 2323 was coupled to
2419 in the presence of base, then the resultant mixture
of E/Z alkenes saturated with di-imide to give 25,
de-protected, oxidized and chain extended with 26 to
give 27. A second coupling to 11 with base, satura-
tion of the alkene and removal of the silyl protecting
group led to 28, ½a�20

D +9.3 (c 1.07, CHCl3). This was
oxidized to ketone 29,33 which gave a molecular ion
on MALDI-MS identical to that of one component
of a mixture of ketomycolic acids, corresponding to a
major homologue containing a cis-cyclopropane.29

The 1H NMR showed cyclopropane signals identical
to those of the minor components in the natural
sample; the 13C NMR was largely identical to that of
the natural sample and the cyclopropane methylene
group appeared at d 10.93, identical to the signal for
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Scheme 6. Reagents and conditions (i) (a), LiN(SiMe3)2, THF (91%); (b), TPBSH, THF (70%); (ii) (a), LiAlH4, THF (97%); (b), PCC,
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(100%).
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this group in the minor components of the natural mix-
ture (Scheme 6).

The availability of ketomycolates 13 and 29,34 and the
corresponding deprotected hydroxy acids, coupled with
the synthesis of the corresponding S,S-hydroxy and S-
ketoacids using the known enantiomer of 8 will allow
the specific factors affecting the biological properties of
these molecules to be determined.
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